Table 1: Sample Collection Information Wildroot Building Site Buffalo, Eric County, New York August 6 through 8, 2014

RST 3 Sample No.	Lab ID	Matrix	Sample Date	Sample	Depth	Sample Type	Analysis
P001-COMP01-LW-01	1408019-01	Liquid Waste	8/6/2014	Time 13:20	(inches) NA	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-COMP02-LW-01	1408028-01	Liquid Waste	8/6/2014	13:25	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0302-LW-01	1408019-07	Liquid Waste	8/6/2014	9:00	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0310-LW-01	1408019-04	Liquid Waste	8/6/2014	9:12	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0312-LW-01	1408019-05	Liquid Waste	8/6/2014	9:15	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0314-LW-01	1408019-02	Liquid Waste	8/6/2014	11:00	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0501-LW-01	1408019-08	Liquid Waste	8/6/2014	11:45	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0502-LW-01	1408028-02	Liquid Waste	8/6/2014	11:50	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0702-SW-01	1408019-06	Solid Waste	8/6/2014	13:00	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-PL0202-SW-01	1408019-03	Solid Waste	8/6/2014	8:55	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA TCL VOCs, TCL SVOCs, TCL PCBs, TCL
P001-DR0703-LW-01	1408019-09	Liquid Waste	8/6/2014	13:05	NA	Field Sample	Pesticides, TAL Metals + Hg, RCRA RCRA
P001-ACM001-01	798028	Bulk	8/6/2014	16:00	NA	Field Sample	Asbestos
P001-ACM002-01	797995	Bulk	8/6/2014	16:20	NA	Field Sample	Asbestos
P001-ACM003-01	797996	Bulk	8/6/2014	16:30	NA	Field Sample	Asbestos
P001-ACM004-01	797997	Bulk	8/6/2014	16:40	NA	Field Sample	Asbestos
P001-ACM005-01	797998	Bulk	8/6/2014	16:50	NA NA	Field Sample	Asbestos
P001-ACM006-01	797999	Bulk	8/6/2014	17:00	NA	Field Sample	Asbestos
P001-ACM007-01	798000	Bulk	8/6/2014	17:10	NA NA	Field Sample	Asbestos
P001-ACM008-01	798001	Bulk	8/7/2014	9:08	NA NA	Field Sample	Asbestos
P001-ACM009-01	798001	Bulk	8/7/2014	9:15	NA NA	Field Sample	Asbestos
P001-ACM010-01	798002	Bulk	8/7/2014	9:23	NA NA	Field Sample	Asbestos
	798003				NA NA	*	Asbestos
P001-ACM011-01		Bulk	8/7/2014	9:28		Field Sample	
P001-ACM012-01	798005	Bulk	8/7/2014	9:31	NA NA	Field Sample	Asbestos
P001-ACM013-01	797986	Dust	8/7/2014	9:38	NA	Field Sample	Asbestos
P001-ACM014-01	798006	Bulk	8/7/2014	9:48	NA	Field Sample	Asbestos
P001-ACM015-01	798007	Bulk	8/7/2014	9:50	NA	Field Sample	Asbestos
P001-ACM016-01	797987	Dust	8/7/2014	9:55	NA	Field Sample	Asbestos
P001-ACM017-01	798008	Bulk	8/7/2014	10:00	NA	Field Sample	Asbestos
P001-ACM018-01	798009	Bulk	8/7/2014	10:15	NA	Field Sample	Asbestos
P001-ACM019-01	798010	Bulk	8/7/2014	10:22	NA	Field Sample	Asbestos
P001-ACM020-01	798011	Bulk	8/7/2014	10:25	NA	Field Sample	Asbestos
P001-ACM021-01	798012	Bulk	8/7/2014	10:27	NA	Field Sample	Asbestos
P001-ACM022-01	798013	Bulk	8/7/2014	10:30	NA	Field Sample	Asbestos
P001-ACM023-01	797988	Dust	8/7/2014	10:35	NA	Field Sample	Asbestos
P001-ACM024-01	798014	Bulk	8/7/2014	10:36	NA	Field Sample	Asbestos
P001-ACM025-01	798015	Bulk	8/7/2014	10:37	NA	Field Sample	Asbestos
P001-ACM026-01	798016	Bulk	8/7/2014	16:15	NA	Field Sample	Asbestos
P001-ACM027-01	798017	Bulk	8/7/2014	16:20	NA	Field Sample	Asbestos
P001-ACM028-01	798018	Bulk	8/7/2014	16:30	NA	Field Sample	Asbestos
P001-ACM029-01	798019	Bulk	8/7/2014	16:40	NA	Field Sample	Asbestos
P001-ACM030-01 Notes:	798020	Bulk	8/7/2014	16:45	NA	Field Sample	Asbestos

NA - Not Applicable TCL - Target Compound List

RCRA - Resource Conservation and Recovery Act

TAL - Target Analyte List VOC - Volatile Organic Compound SVOC - Semivolatile Organic Compound

PCB - Polychlorinated Biphenyl

Hg - Mercury

Table 1: Sample Collection Information Wildroot Building Site Buffalo, Eric County, New York August 6 through 8, 2014

RST 3 Sample No.	Lab ID	Matrix	Sample Date	Sample Time	Depth (inches)	Sample Type	Analysis
P001-ACM031-01	798021	Bulk	8/7/2014	16:50	NA	Field Sample	Asbestos
P001-ACM032-01	798022	Bulk	8/7/2014	16:55	NA	Field Sample	Asbestos
P001-ACM033-01	798023	Bulk	8/7/2014	17:02	NA	Field Sample	Asbestos
P001-ACM034-01	798024	Bulk	8/7/2014	17:06	NA	Field Sample	Asbestos
P001-ACM035-01	798025	Bulk	8/7/2014	17:08	NA	Field Sample	Asbestos
P001-ACM036-01	798026	Bulk	8/7/2014	17:17	NA	Field Sample	Asbestos
P001-ACM037-01	798027	Bulk	8/7/2014	17:29	NA	Field Sample	Asbestos
P001-S001-0002-01	1408024-05/ 797989	Soil	8/7/2014	8:55	0 to 2	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-S002-0002-01	1408024-01/ 797990	Soil	8/7/2014	9:15	0 to 2	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-S003-0002-01	1408024-02/ 797991	Soil	8/7/2014	9:30	0 to 2	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-S003-0002-02	1408024-03/ 797992	Soil	8/7/2014	9:30	0 to 2	Field Duplicate of P001-S003-0002-01	TCL VOCs, TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-S004-0002-01	1408024-06	Soil	8/7/2014	10:14	0 to 2	Field Sample	TCL SVOCs, TCL PCB
P001-S005-0002-01	1408024-07/ 797793	Soil	8/7/2014	12:00	0 to 2	Field Sample	TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-S006-0002-01	1408024-04/ 797794	Soil	8/7/2014	12:10	0 to 2	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TAL Metals + Hg, Asbestos
P001-UST01-LW-01	1408019-10	Liquid Waste	8/7/2014	12:30	NA	Field Sample	TCL VOCs, TCL SVOCs, TCL PCBs, TCL Pesticides, TAL Metals + Hg, RCRA
P001-PC001-01	1408025-12	Paint Chip	8/8/2014	9:12	NA	Field Sample	Total Lead
P001-PC002-01	1408025-01	Paint Chip	8/8/2014	9:25	NA	Field Sample	Total Lead
P001-PC003-01	1408025-02	Paint Chip	8/8/2014	9:35	NA	Field Sample	Total Lead
P001-PC004-01	1408025-03	Paint Chip	8/8/2014	9:38	NA	Field Sample	Total Lead
P001-PC005-01	1408025-04	Paint Chip	8/8/2014	9:42	NA	Field Sample	Total Lead
P001-PC006-01	1408025-05	Paint Chip	8/8/2014	9:49	NA	Field Sample	Total Lead
P001-PC007-01	1408025-06	Paint Chip	8/8/2014	9:50	NA	Field Sample	Total Lead
P001-PC008-01	1408025-07	Paint Chip	8/8/2014	9:54	NA	Field Sample	Total Lead
P001-PC009-01	1408025-08	Paint Chip	8/8/2014	9:59	NA	Field Sample	Total Lead
P001-PC010-01	1408025-09	Paint Chip	8/8/2014	10:02	NA	Field Sample	Total Lead
P001-PC011-01	1408025-10	Paint Chip	8/8/2014	10:08	NA	Field Sample	Total Lead
P001-PC012-01	1408025-11	Paint Chip	8/8/2014	10:10	NA	Field Sample	Total Lead

Notes:

NA - Not Applicable TCL - Target Compound List

RCRA - Resource Conservation and Recovery Act

TAL - Target Analyte List VOC - Volatile Organic Compound SVOC - Semivolatile Organic Compound

PCB - Polychlorinated Biphenyl Hg - Mercury

Table 2 Container/Drum Inventory and HazCat Data Wildroot Building Site August 2014

			Content/Container Label				Solui	bility	Reac	tivity					Chlorine					PID Readings		
Container ID #	Container Type/Description	Quantity	Description	Color	Matrix	Clarity	Water	Hexane	Air	Water	pН	Oxidizer	Peroxide	Flammable	Hot Wire	Chloride	Cyanide	Iodine	Sulfide	(ppm)	Notes	RST 3 Sample #
DR0101	55 gallon steel drum, open top	4"	Viscous liquid	Black	Liquid	Op	N	Y	N	N	NA	Slight	N	С	N	N	N	NT	N	43	-	NA
DR0201	55 gallon steel drum, open top	1%	Viscous liquid	Black	Liquid	Op	N	Y	N	N	NA	Slight	N	C	N	NT	N	NT	N	39	-	P001-COMP02-LW-01
PL0202	5-Gallon poly pail	1/3 Full	White Cream/Gel	White	Gel	Op	Y	N	N	N	7	N	N	С	N	N	N	NT	N	31	-	P001-PL0202-SW-01
DR0301	55 gallon steel drum, open top	1/2 Full	Oily liquid	Amber	Liquid	Op	N	Y	N	N	NA	N	N	С	N	NT	N	NT	N	34	-	P001-COMP01-LW-01
DR0302	55 gallon steel drum, closed top	1/2 Full	2 Phase: Layer A (30%): Oily Liquid	Amber	Liquid	Op	N	Y	N	N	NA	N	N	1	С	N	N	NT	N	233	Combustible, unsaturated hydrocarbon	P001-DR0302-LW-01
DR0302	3.5 gailou steer trium, crosed top	112 Tun	Layer B (70%): Watery	Light Amber	Liquid	Cld	Y	N	N	N	7	N	N	N	Y	Y	N	NT	N		Slight positive for chloride	NA
DR0303	55 gallon steel drum, open top	3"	Oily	Amber	Liquid	Cld	N	Y	N	N	NA	N	N	N	N	NT	N	NT	N	1.1	-	P001-COMP01-LW-01
DR0304	55 gallon steel drum, open top	<1%	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25	Not enough for sampling	NA
DR0305	55 gallon steel drum, open top	1/2 Full	Oily, - Viscous	Amber	Liquid	Cld	N	Y	N	N	NA	N	N	С	N	N	N	NT	N	17	_	P001-COMP01-LW-01
DR0306	55 gallon steel drum	l"	-	Yellow	Liquid	Clr	-	-	-	-	-	-	-	-	-		-	-	-	25	Not enough for sampling	NA
DR0307	55 gallon steel drum, open top	1/2"	Liquid	Yellow	Liquid	-	-	-	-	-	-							-	-	-	Not enough for sampling	NA
DR0308	55 gallon steel drum, open top	2"	~Viscous	Purple	Liquid	Cld	N	Y	N	N	NA	N	N	C	N	N	N	NT	N	140	_	NA
DR0309	55 gallon poly drum, open top	I"	Viscous oil 2 Phase: Layer A (30%):	Black	Liquid	Op	N	Y	N	N	NA	N	N	C	N	NT	N	NT	N	7.5	-	P001-COMP02-LW-01
DR0310	55 gallon steel drum, open top	3"	Viscous oil	Black	Liquid	Op	N Y	Y	N	N	NA 7	N	N	I	N	NT	N	NT	N	73	Oil	P001-DR0310-LW-01
			Layer B (70%): Watery	Clear	Liquid	Clr	Y	N	N	N	7	N	N	N	N	N	N	NT	N		Probably Water	NA
DR0311	55 gallon ring top steel drum, open top	1"	Grease	Brown/ Black	Grease	Op	N	N	N	N	NA	N	N	I	N	N	N	NT	N	2.9	-	NA
DR0312	55 gallon poly drum, open top	Full	2 Phase: Layer A (10%): ~ Viscous, oily	Brown	Liquid	Op	N	Y	N	N	NA	N	N	I	N	N	N	NT	N	1.3	-	P001-DR0312-LW-001
			Layer B (90%): Watery	Clear	Liquid	Clr	Y	N	N	N	5	N	N	N	N	N	N	NT	N		Probably Water	NA
DR0313	55 gallon steel drum, ring top	3"	Watery	Black	Liquid	Op	N	Y	N	N	NA	Slight	N	С	N	N	N	NT	N	267	-	P001-COMP02-LW-01
DR0314	55 gallon steel drum, open top	1/2 Full	2 Phase: Layer A (5%): Watery	Brown	Liquid	Op	N	Y	N	N	NA	N	N	С	N	N	N	NT	N	1.0	-	P001-DR0314-LW-01
			Layer B (95%): Watery	Green	Liquid	Op	Y	N	N	N	8	N	N	N	N	Y	N	NT	N		Poss. Antifreeze	NA
DR0315	15 Gallon Poly	2"	Watery	Clear	Liquid	Clr	Y	N	N	N	9	N	N	N	N	N	N	NT	N	0	Appears to be water with some dirt/organics	NA
DR0401	55 gallon steel drum, open top	2"	Tar	Black	Solid	-	N	Y	N	N	NA	N	5 mg/L	C	N	NT	N	NT	N	5	Soft, tar-like	NA
DR0402	55 gallon steel drum, open top	Empty	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
DR0501	55 gallon steel drum, open top	12"	2 Phase: Layer A (50%): ~ Viscous, Oily	Black	Liquid	Cld	N	Y	N	N	NA	N	N	С	N	N	N	NT	N	8.2	-	P001-DR0501-LW-01
			Layer B (50%): Oily	Black	Liquid	Op	Y	N	N	N	8	N	N	N	N	Slight	N	NT	N		-	NA
DR0502	55 gallon steel drum, open top	2"	Watery	Yellow	Liquid	Clr	N	Y	N	N	NA	Y	0.5mg/L	C	N	N	N	NT	N	60	-	P001-DR0502-LW-01
PL0601	5 gallon poly pail	I"	Liquid	Blue	Liquid	Clr	Y	N	N	N	14	N	N	N	N	N	N	NT	N	75	Poss, Sodium Hydroxide	NA
DR0701	55 gallon steel drum, open top	1/3 Full	Watery	Clr	Liquid	Clr	Y	N	N	N	7	N	N	N	N	N	N	NT	N	14	-	NA
DR0702	55 gallon steel drum, open top	-	Tar-like	Black	Solid	Op	N	Y	N	N	NA	N	N	I	N	NT	N	NT	NT	170	-	P001-DR0702-SW-001
DR0703	55 gallon steel drum, open top	-	~ Viscous, Oily	Brown	Liquid	Op	N	Y	N	N	NA	N	N	С	N	N	N	NT	N	75.2	_	P001-DR0703-LW-01
DR0801	5 Gallon Poly	1/2 Full	Oily	Amber	Liquid	Clr	N	Y	N	N	NA	N	N	С	С	N	N	NT	N	3.0	-	NA
UST01	UST	10"	Watery	Clear	Liquid	Cld	Y	N	N	N	7	N	N	N	N	N	N	NT	N	400	-	P001-UST01-LW-01

Notes:
Y - Positive test result; N - Negative test result; NA - Not Applicable: Cu - Clear, Cld - Cloudy; Op - Opaque; I - Ignitable; C - Combustible; NT - Not tested; PID - Photo ionization detector Drums and containers that are no listed in this table were RCRA empty - Soncewhat
HasCat conducted, drum/containers sampled
HasCat conducted drum/containers on sampled

Table 3: Asbestos Sample Collection Information and Validated Analytical Results Wildroot Building Site Buffalo, Eric County, New York August 6 and 7, 2014

	Sample	Sample					
RST 3 Sample ID	Date	Time	Sample Result	Type	Location	Floor	Comments
			· ·	• • • • • • • • • • • • • • • • • • • •			Located in the courtyard area adjacent to the building; appears to be piece of degraded pipe wrap, approximately 15 inches long and 4" in diameter. Based on materials observed in the structure and the presence
P001-ACM001-01	8/6/2014	16:00	36.36% Chrysotile	Pipe Wrap	Courtyard	N/A	of broken windows, it is believed that this material originated from within the structure.
P001-ACM002-01	8/6/2014	16:20	ND	Plaster	Courtvard	N/A	Located in the courtyard area adjacent to the building; material appears to be weathered mortar or plaster that has fallen from the building.
P001-ACM003-01	8/6/2014	16:30	ND	Plaster	Courtvard	N/A	Located in the courtward area adjacent to the building; material appears to be weathered mortar or plaster that has fallen from the building.
P001-ACM004-01	8/6/2014	16:40	17.39% Chrysotile	Insulation	East Wing Corner	N/A	Located adjacent to the southeast corner of the East Wing and Baily Avenue; appears to be insulation.
P001-ACM005-01	8/6/2014	16:50	ND	Plaster	East Wing Corner	N/A	Located south of where P001-ACM0004-01was sampled; sample collected from debris pile of what appears to be plaster.
P001-ACM006-01	8/6/2014	17:00	ND	Plaster	Paved Area	N/A	Located in parking area; white plaster-like material.
P001-ACM007-01	8/6/2014	17:10	18.18% Chrysotile	Insulation	Paved Area	N/A	Located in the parking lot, northwest corner of building adjacent to bay doors; possible source from open windows.
P001-ACM008-01	8/7/2014	9:08	ND	Insulation	AST Area	N/A	Located adjacent to former aboveground storage tank (AST); appears to be degraded insulation.
P001-ACM009-01	8/7/2014	9:15	ND	Mastic	East Wing	3	Main stairwell, adjacent to window; mastic material.
P001-ACM010-01	8/7/2014	9:23	ND	Plaster	East Wing	3	Same location as P001-ACM009-01; gray ceiling plaster material.
P001-ACM011-01	8/7/2014	9:28	ND	Plaster	East Wing	3	Sample collected from hallway plaster.
P001-ACM012-01	8/7/2014	9:31	ND	Pyrobar	East Wing	3	Sample collected from "Pyrobar" block just below P001-ACM011-01.
P001-ACM013-01	8/7/2014	9:38	ND	Plaster	East Wing	3	Plaster dust material that had degraded from the wall.
P001-ACM014-01	8/7/2014	9:48	ND	Plaster	East Wing	3	East office (along Bailey Ave); plaster adjacent to entry next to staircase.
P001-ACM015-01	8/7/2014	9:50	ND	Plaster	East Wing	3	East office: dust sampled from window sill, source is plaster.
P001-ACM016-01	8/7/2014	9:55	ND	Dust	East Wing	2	Dust sample collected from floor in main room next to main stairwell. Sample situated near north side windows, most likely ceiling plaster.
P001-ACM017-01	8/7/2014	10:00	ND	Plaster	East Wing	2	Plaster collected from main room wall adjacent to door to main stairwell.
P001-ACM018-01	8/7/2014	10:15	36.36% Chrysotile	Pipe Wrap	East Wing	2	Asbestos staging room; sample collected from pipe wrap pile. Individual wraps in the area are approximately 4" diameter and 3-4' in length.
P001-ACM019-01	8/7/2014	10:22	40.00% Chrysotile	Pipe Wrap	East Wing	2	Same room as P001-ACM018-01; sample collected from material in plastic garbage bags.
P001-ACM020-01	8/7/2014	10:25	ND	Plaster	East Wing	2	Room situated two rooms east of the main room along the south wall, sample of plaster material above the window.
P001-ACM021-01	8/7/2014	10:27	ND	Pyrobar	East Wing	2	Eastern most end of East Wing; sample collected from "Pyrobar" laying on the ground.
P001-ACM022-01	8/7/2014	10:30	ND	Plaster	East Wing	2	North facing window in same area as P001-ACM021-01, sample of degraded plaster material accumulating on windowsill.
P001-ACM023-01	8/7/2014	10:35	ND	Dust	East Wing	2	Hallway near P001-ACM021-01; dust sample collected from floor.
P001-ACM024-01	8/7/2014	10:36	9.09% Chrysotile	Pipe Wrap	East Wing	2	South room on the Eastside of the East wing in area believed to be a former lavatory; pipe wrap sampled from ceiling pipe.
P001-ACM025-01	8/7/2014	10:37	ND	Mortar	East Wing	2	Sample collected from mortar material between "Pyrobar" blocks.
P001-ACM026-01	8/7/2014	16:15	40.00% Chrysotile	Pipe Wrap	Main Building	2	First room north of 2nd Stairwell; sample collected from pipe wrap material. Pipe runs across the ceiling is approximately 8" in diameter, pipe wrap is approximately 10" in diameter.
P001-ACM027-01	8/7/2014	16:20	57.14% Chrysotile	Pipe Wrap	Main Building	2	Second room north of 2 nd Stairwell; sample collected from pipe wrap material at 90 degree bend. Pipe runs across the ceiling is approximately 8" in diameter, pipe wrap is approximately 10" in diameter.
P001-ACM028-01	8/7/2014	16:30	23.53% Chrysotile 9.30% Amosite	Pipe Wrap	Main Building	2	Northeast corner of main open space; pipe wrap material from 6" diameter pipes adjacent to open window.
P001-ACM029-01	8/7/2014	16:40	50.00% Chrysotile	Pipe Wrap	Main Building	2	"Drying Room"; (" diameter heating pipe with wrap above corrugated metal ceiling.
P001-ACM030-01	8/7/2014	16:45	50.00% Chrysotile	Pipe Wrap	Main Building	2	"Drying Room"; pile of degraded pipe wrap located on the ground.
P001-ACM031-01	8/7/2014	16:50	ND	Plaster	Main Building	3	Northside of main open space; sample collected from ceiling material that had fallen to the floor.
P001-ACM032-01	8/7/2014	16:55	1.24% Anthophyllite	Mastic	Main Building	3	Office space along northeast side structure, adjacent to main open space area; sample collected from degraded mastic material found on the floor (believed to have fallen from the ceiling).
P001-ACM033-01	8/7/2014	17:02	ND	Plaster	Main Building	3	Located in the same room as P001-ACM032-01; ceiling plaster.
P001-ACM034-01	8/7/2014	17:06	40.00% Chrysotile	Pipe Wrap	Main Building	3	Southeast side of Main Building; pipe insulation collected from ceiling pipe near open window.
P001-ACM035-01	8/7/2014	17:08	36.36% Chrysotile	Pipe Wrap	Main Building	3	Southwest corner of Main Building: degraded pipe insulation wrapped around multiple 1" diameter pipes adjacent to open window.
P001-ACM036-01	8/7/2014	17:17	11.76% Chrysotile	Insulation	Main Building	1	Boiler room; sample of duct insulation running from the boiler to the chimney located on the south wall.
P001-ACM037-01	8/7/2014	17:29	ND	Pipe Wrap	Main Building	N/A	Loading dock area along West Shore Avenue; brown fibrous pipe wrap.
P001-S001-0002-01	8/7/2014	8:55	ND	Soil	AST Area	N/A	Soil Sample collected from area situated around former AST area.
P001-S002-0002-01	8/7/2014	9:15	ND	Soil	AST Area	N/A	Soil Sample collected from area situated around former AST area.
P001-S003-0002-01	8/7/2014	9:30	ND	Soil	AST Area	N/A	Soil Sample collected from area situated around former AST area.
P001-S003-0002-02	8/7/2014	9:30	ND	Soil	AST Area	N/A	Soil Sample collected from area situated around former AST area.
P001-S005-0002-01	8/7/2014	12:00	1.25% Chrysotile	Soil	Main Building Boiler Room	1	Sample collected from the cleanout area underneath furnace in boiler room.
P001-S006-0002-01	8/7/2014	12:10	ND	Soil	Main Building Boiler Room	1	Sample collected from base of chimney cleanout in boiler room.

N/A= Not applicable. Sample location outside the building. ND = Non Detect, no asbestos found.

Table 4: Analytical Data Summary: Volatile Organic Compounds (VOCs) Wildroot Building Site **Buffalo, Erie County, NY** August 6 and 7, 2014

RST 3 Sample Number	P001_DR0302_LW_01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001-DR0314-LW-01	P001-DR0501-LW-01	P001-DR0502-LW-01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-01	1408028-01	1408019-10
Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014
Sample Bate Sample Matrix	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste
Unit	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/L
Dilution Factor	1.000	1,000	50	50	50	50	1,000	294.12	500
VOC	1,000	1,000	50	30	20	50	1,000	27 1112	300
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	120,000 D
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl acetate	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND	49 JB	69 JB	ND	380 JBD	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND
1,1,1-Trichloroethane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Cyclohexane Bromochloromethane	5,500 D ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	3,500 D ND	ND ND
Carbon tetrachloride	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloroethane	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Benzene	2.500 JD	320 JD	28 J	ND ND	ND	ND ND	ND ND	1,500 D	ND
Trichloroethene	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	40,000 D	5,300 D	53 J	ND	ND	ND	ND	14.000 D	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND	ND	ND	480,000 DE
Toluene	60,000 BD	38,000 BD	530 B	17 JB	26 J	51 J	1,000 BD	17,000 D	ND
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Chlorobenzene	ND	ND	ND (20)	ND	ND 05 Y	ND 160 X	ND	ND	ND ND
Ethylbenzene	68,000 D	49,000 D	630	ND 42 X	85 J	160 J	ND 500 PD	15,000 D	ND
m,p-Xylene	250,000 D 120,000 D	180,000 D	3,800 2,900	42 J 44 J	580 650	1,400 1,900	560 JD	64,000 D 32,000 D	ND ND
o-Xylene	.,	97,000 D ND	,,	ND	ND	,	630 JD	. ,	ND ND
Styrene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform Isopropylbenzene	38.000 D	35,000 D	320	ND ND	260	2,900	940 JD	4.200 D	ND ND
1,1,2,2-Tetrachloroethane	38,000 D ND	ND	ND	ND ND	ND	2,900 ND	ND ND	4,200 D ND	ND ND
1,3-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	370,000 D	280,000 D	6,700	86 J	1,200	3,200	1,200 JD	95.000 D	ND
-, (******)	5.0,000 B	200,000 B	0,,00		-,	2,200	1,200 31	70,000 B	1,2

Notes:
Liquid and solid waste samples indicate preliminary analytical data.
Soil samples indicate validated analytical data.

ug/kg - microgram per kilogram, ug/L - microgram per liter

- J The reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL) B Analyte found in the associated method blank as well as in the sample.
- D Sample was diluted.
- ND Not Detected
- E Concentration exceeds upper level of the calibration range of the instrument.

Table 4: Analytical Data Summary: Volatile Organic Compounds (VOCs) Wildroot Building Site **Buffalo, Erie County, NY** August 6 and 7, 2014

RST 3 Sample Number	P001-DR0702-SW-01	P001-PL0202-SW-01	P001-S001-0002-01	P001-S002-0002-01	P001-S003-0002-01	P001-S003-0002-02	P001-S006-0002-01
CompuChem Lab ID	1408019-06	1408019-03	1408024-05	1408024-01	1408024-02	1408024-03	1408024-04
	8/6/2014	8/6/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014
Sample Date Sample Matrix	Solid Waste	Solid Waste	80114 Soil	8///2014 Soil	80il	8///2014 Soil	8///2014 Soil
Unit	ug/kg						
Dilution Factor	50	50	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1
VOC	30	30	1	1	1	1	1
Dichlorodifluoromethane	ND						
Chloromethane	ND						
Vinyl chloride	ND						
Bromomethane	ND	ND	ND	ND	ND	4.7 J	ND
Chloroethane	ND	ND	ND	ND	ND	ND ND	ND
Trichlorofluoromethane	ND						
1,1-Dichloroethene	ND						
Acetone	ND	ND	ND	ND	320	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	ND						
Carbon disulfide	ND						
Methyl acetate	ND						
Methylene chloride	ND						
trans-1,2-Dichloroethene	ND						
Methyl tert-butyl ether	ND						
1,1-Dichloroethane	ND						
cis-1,2-Dichloroethene	ND						
2-Butanone	ND	ND	ND	ND	22	ND	ND
Chloroform	ND						
1,1,1-Trichloroethane	ND						
Cyclohexane	ND	6,800	ND	ND	ND	ND	ND
Bromochloromethane	ND						
Carbon tetrachloride	ND						
1,2-Dichloroethane	ND						
Benzene	ND						
Trichloroethene	ND						
Methylcyclohexane	1,100	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND						
Bromodichloromethane	ND						
cis-1,3-Dichloropropene	ND						
4-Methyl-2-pentanone	ND 52 PD	ND	ND	ND	ND	ND	ND
Toluene	52 JB	35,000 B	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	ND	ND ND	ND ND	ND	ND ND	ND	ND
1,1,2-Trichloroethane Tetrachloroethene	ND ND						
2-Hexanone	ND ND						
Dibromochloromethane	ND ND						
1,2-Dibromoethane	ND ND						
Chlorobenzene	ND ND						
Ethylbenzene	1000	80,000	ND ND	ND ND	ND ND	ND ND	ND ND
m,p-Xylene	12,000	400,000 E	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene	12,000 E	1,500,000 E	ND ND	ND ND	ND ND	ND ND	ND ND
Styrene	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform	ND						
Isopropylbenzene	5,900	2,200,000 E	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND						
1,3-Dichlorobenzene	ND						
1,4-Dichlorobenzene	ND						
1,2-Dichlorobenzene	ND	170,000 E	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	ND						
1,2,4-Trichlorobenzene	ND						
Xylenes (Total)	24,000	1,900,000 E	ND	ND	ND	ND	ND

Notes:
Liquid and solid waste samples indicate preliminary analytical data.
Soil samples indicate validated analytical data.

ug/kg - microgram per kilogram, ug/L - microgram per liter

- B Analyte found in the associated method blank as well as in the sample.

 D Sample was diluted.

 ND Not Detected

- E Concentration exceeds upper level of the calibration range of the instrument.

Table 5: Analytical Data Summary: Semivolatile Organic Compounds (SVOCs) Wildroot Building Site Buffalo, Erie County, NY August 6 and 7, 2014

Comparison to Bit Administration December Decem	RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001-DR0314-LW-01	P001-DR0501-LW-01	P001-DR0502-LW-01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01
Samph Marten Depart Marten										
	Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014
Note		_		Liquid Waste	Liquid Waste	•	Liquid Waste	Liquid Waste		Liquid Waste
Second S		10	10	10	1	10	1	1	10	1
St. cyclamody, plant No.		MD	ND	ND	ND	ND	ND	ND	ND	NID
Scheengebeard										
State										
22.079/str., 248eseprepane)										
Net Methodophenic No	2,2'-Oxybis(1-chloropropane)									
No. No.	3&4-Methylphenol	ND	ND		ND	ND	ND	ND	ND	ND
Machantenhane	N-Nitroso-di-n-propylamine									
No. No.	Acetophenone									
Settlement ND	Hexachloroethane									
Selegoption NO NO NO NO NO NO NO N										
24 Demonstraphysional										
Site 2-bit converse presentance										
A De Behroppend ND										
Neglectonics	2,4-Dichlorophenol									
Chlorosaline	Naphthalene									
Actividence 10,000 10,00	4-Chloroaniline									
Methylaphtaker 2,000,000 D	Hexachlorobutadiene									
2.46 Firekherophenol		, ,		· · · · · · · · · · · · · · · · · · ·						
Ast-Friedrophened ND										
Schlorospitalene ND										
No. No.										
2.6-Districtoshenee	2-Nitroaniline									
No. No.	Dimethylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND
New Contemporaries	2,6-Dinitrotoluene									
Nexempthtene	Acenaphthylene									
A-E-Distripphenol ND ND ND ND ND ND ND N										
No. No.										
A-B-Dintrolutione ND										
Different (Part) Different (
No										
Paurene 200,000 ID 580,000 D ND ND ND 78,000 ID 420,000 ND ND ND ND ND ND ND	Diethylphthalate						,			
Nitrosadiline	4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Fluorene	,								
Next	4-Nitroaniline									
Floromphenyl-phenylether ND										
Hexachlorobenzene			· · · · · · · · · · · · · · · · · · ·							
ND ND ND ND ND ND ND ND										
Plenanthene										
Anthracene ND	Phenanthrene									
ND ND ND ND ND ND ND ND	Anthracene	ND		ND	ND	ND		ND	ND	ND
Presence ND ND ND ND ND ND ND N	Carbazole									
Pyrene	Di-n-butylphthalate									
No										
ND ND ND ND ND ND ND ND	- v									
ND										
Senzo(a)anthracene ND										
ND ND ND ND ND ND ND ND	Benzo(a)anthracene			ND						
ND ND ND ND ND ND ND ND	Chrysene	ND	ND	ND	ND	ND	ND	ND	ND	ND
ND ND ND ND ND ND ND ND	Di-n-octylphthalate									
ND ND ND ND ND ND ND ND	Benzo(b)fluoranthene									
Indeno(1,2,3-cd)pyrene										
Dibenzo(a,h)anthracene ND ND<										
Benzo(g,h,i)perylene ND ND <td></td>										
Benzaldehyde ND										,
Caprolactam ND	Benzaldehyde									
Atrazine ND	Caprolactam									
1,1'-Biphenyl 260,000 JD 600,000 D ND ND ND ND 710,000 E ND ND ND ND	Atrazine									
	1,1'-Biphenyl	260,000 JD	600,000 D	ND	ND	ND	710,000 E	ND	ND	ND

- Notes:
 Liquid and solid waste samples indicate preliminary analytical data.
 Soil samples indicate validated analytical data.
 All results are reported in micrograms per kilogram (µg/kg)
 J The result is an estimated quantity, but the result may be biased low
 D Sample was diluted
 E Concentrations exceed the calibration range of the HRGC/HRMS instrument for that specific analysis.
 NA Not Applicable
 ND Not Detected

Table 5: Analytical Data Summary: Semivolatile Organic Compounds (SVOCs) Wildroot Building Site Buffalo, Erie County, NY August 6 and 7, 2014

RST 3 Sample Number	P001-DR0702-SW-01	P001-PL0202-SW-01	P001-S001-0002-01	P001-S002-0002-01	P001-S003-0002-01	P001-S003-0002-02	P001-S004-0002-01	P001-S005-0002-01	P001-S006-0002-01
CompuChem Lab ID	1408019-06	1408019-03	1408024-05	1408024-01	1408024-02	1408024-03	1408024-06	1408024-07	1408024-04
Sample Date	8/6/2014	8/6/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014
Sample Matrix	Solid Waste	Solid Waste	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Dilution Factor	10	1	10	10	10	10	10	1	10
SVOC	l vin	\T_	\v_	N.D.	N.D.	1 175	\VD	NTD.	N.D.
Phenol Bis(2-chloroethyl)ether	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Methylphenol	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
2,2'-Oxybis(1-chloropropane)	ND	ND	ND	ND	ND	ND	ND	ND	ND
3&4-Methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
2-Nitrophenol 2,4-Dimethylphenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-chloroethoxy)methane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dichlorophenol	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	7,300 J	270 J	ND	ND	ND	ND	ND	ND
4-Chloroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloronapthalene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Nitroaniline	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dimethylphthalate	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	ND	ND	450 J	ND	ND	480 J	ND	ND	ND
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND
2,4-Dinitrotoluene Dibenzofuran	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Diethylphthalate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Chlorophenyl-phenylether	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	ND	ND	480 J	250 J	260 J	510 J	ND	ND	ND
4-Nitroaniline	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl-phenylether	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
Hexachlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pentachlorophenol Phenanthrene	ND ND	ND ND	5,100	2,100	3,000	4,700	9,800 J	ND 14 J	2,500
Anthracene	ND	ND ND	880 J	460 J	600 J	1,100 J	1,500 J	ND	370 J
Carbazole	ND	ND	730 J	270 J	370 J	570 J	ND	ND	300 J
Di-n-butylphthalate	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	ND	ND	6,900	2,600	4,800	6,100	9,700 J	36 J	2,500
Pyrene	ND	ND	5,200	1,900	3,600	4,500	7,700 J	29 J	1,800 J
Butylbenzylphthalate	ND	ND	1,100 J	ND	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bis(2-ethylhexyl)phthalate Benzo(a)anthracene	ND ND	ND ND	2,700	1,100 J	2,000	2,500	4,400 J	ND ND	ND 880 J
Chrysene	ND ND	ND ND	3,200	1,100 J 1,200 J	2,000	2,700	6,700 J	25 J	1,000 J
Di-n-octylphthalate	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Benzo(b)fluoranthene	ND	ND	4,000	1,200 J	2,600	3,300	5,400 J	34 J	1,100 J
Benzo(k)fluoranthene	ND	ND	1,600 J	600 J	1,300 J	1,200 J	ND	ND	520 J
Benzo(a)pyrene	ND	ND	2,700	910 J	1,900	2,300	3,300 J	ND	740 J
Indeno(1,2,3-cd)pyrene	ND	ND	2,000	610 J	1,400 J	1,600 J	ND	ND	450 J
Dibenzo(a,h)anthracene	ND	ND	ND	ND 540 Y	ND	ND	ND	ND 57. Y	ND
Benzo(g,h,i)perylene	ND ND	ND ND	1,800 J	540 J	1,200 J	1,300 J	ND	57 J	440 J
Benzaldehyde Caprolactam	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Atrazine	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1'-Biphenyl	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
-,- =-pnenji	1.2	1.2	. 140	.,	1.02		1,2	1.02	1.2

- Notes:
 Liquid and solid waste samples indicate preliminary analytical data.
 Soil samples indicate validated analytical data.
 All results are reported in micrograms per kilogram (μg/kg)
 J The result is an estimated quantity, but the result may be biased low
 D Sample was diluted
 E Concentrations exceed the calibration range of the HRGC/HRMS instrument for that specific analysis.
 NA Not Applicable
 ND Not Detected

Table 6: Validated Analytical Data Summary: Pesticides Wildroot Building Site Buffalo, Erie County, New York August 6 and 7, 2014

RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001_DR0314_LW_01	POOL-DROSOLJ WJOL	P001_DR0502_LW_01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01	P001-DR0702-SW-01	P001_PL0202_SW_01
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-01	1408028-01	1408019-10	1408019-06	1408019-03
Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014	8/6/2014	8/6/2014
Sample Matrix	Liquid Waste	Liquid Waste	Solid Waste	Solid Waste							
Dilution Factor	10	10	50	1	50	1	10	10		10	1
Pesticides							•				
alpha-BHC	ND	ND	ND	R	ND	95 JN	ND	756 J	ND	ND	ND
gamma-BHC (Lindane)	60 J	ND	ND	R	ND	3.44 J	ND	ND	ND	ND	ND
Heptachlor	57.5 J	60 J	505 J	R	ND	ND	ND	ND	ND	ND	ND
Aldrin	ND	ND	ND	6.15 J	ND	ND	1,240 J	439 J	ND	ND	ND
beta-BHC	ND	ND	ND	R	ND	ND	ND	1,730 J	ND	ND	ND
delta-BHC	ND	42.1 J	ND	4.87 J	ND	ND	75.0 J	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	R	ND	ND	ND	506 JN	ND	ND	ND
gamma-Chlordane	ND	ND	ND	12.9 J	ND	ND	455 J	588 JN	ND	ND	ND
alpha-Chlordane	ND	ND	ND	3.91 J	ND	ND	523 JN	94.5 J	ND	ND	ND
Endosulfan I	ND	38.6 J	295 J	R	ND	ND	505 J	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	5.05 J	ND	ND	ND	843 JN	ND	ND	ND
Dieldrin	25.7 J	ND	ND	R	ND	4,380 J	142 J	66 J	ND	ND	ND
Endrin	ND	ND	ND	5.95 J	ND	ND	711 JN	ND	ND	ND	ND
4,4'-DDD	ND	ND	ND	3.27 J	ND	474 JN	ND	ND	ND	ND	ND
Endosulfan II	ND	49.6 J	270 J	4.29 J	ND	ND	32,900 J*	114 J	ND	ND	ND
4,4'-DDT	ND	ND	ND	R	ND	589 JN	ND	532 J	ND	ND	ND
Endrin Aldehyde	ND	154 J	ND	6.70 J	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	24.2 J	ND	R	ND	286 J	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	14.5 J	ND	ND	ND	5,710 JN	ND	ND	ND
Endrin ketone	ND	ND	242 J	29.6 J	108 J	161 J	ND	356 J	ND	ND	ND
Toxaphene	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	ND
Notes:							* 50 X D/F				

Table 6: Validated Analytical Data Summary: Pesticides Wildroot Building Site Buffalo, Erie County, New York August 6 and 7, 2014

RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001_DR0314_LW_01	POOL-DROSOLJ WJOL	P001_DR0502_LW_01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01	P001-DR0702-SW-01	P001_PL0202_SW_01
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-01	1408028-01	1408019-10	1408019-06	1408019-03
Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014	8/6/2014	8/6/2014
Sample Matrix	Liquid Waste	Liquid Waste	Solid Waste	Solid Waste							
Dilution Factor	10	10	50	1	50	1	10	10		10	1
Pesticides							•				
alpha-BHC	ND	ND	ND	R	ND	95 JN	ND	756 J	ND	ND	ND
gamma-BHC (Lindane)	60 J	ND	ND	R	ND	3.44 J	ND	ND	ND	ND	ND
Heptachlor	57.5 J	60 J	505 J	R	ND	ND	ND	ND	ND	ND	ND
Aldrin	ND	ND	ND	6.15 J	ND	ND	1,240 J	439 J	ND	ND	ND
beta-BHC	ND	ND	ND	R	ND	ND	ND	1,730 J	ND	ND	ND
delta-BHC	ND	42.1 J	ND	4.87 J	ND	ND	75.0 J	ND	ND	ND	ND
Heptachlor epoxide	ND	ND	ND	R	ND	ND	ND	506 JN	ND	ND	ND
gamma-Chlordane	ND	ND	ND	12.9 J	ND	ND	455 J	588 JN	ND	ND	ND
alpha-Chlordane	ND	ND	ND	3.91 J	ND	ND	523 JN	94.5 J	ND	ND	ND
Endosulfan I	ND	38.6 J	295 J	R	ND	ND	505 J	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	5.05 J	ND	ND	ND	843 JN	ND	ND	ND
Dieldrin	25.7 J	ND	ND	R	ND	4,380 J	142 J	66 J	ND	ND	ND
Endrin	ND	ND	ND	5.95 J	ND	ND	711 JN	ND	ND	ND	ND
4,4'-DDD	ND	ND	ND	3.27 J	ND	474 JN	ND	ND	ND	ND	ND
Endosulfan II	ND	49.6 J	270 J	4.29 J	ND	ND	32,900 J*	114 J	ND	ND	ND
4,4'-DDT	ND	ND	ND	R	ND	589 JN	ND	532 J	ND	ND	ND
Endrin Aldehyde	ND	154 J	ND	6.70 J	ND	ND	ND	ND	ND	ND	ND
Endosulfan Sulfate	ND	24.2 J	ND	R	ND	286 J	ND	ND	ND	ND	ND
Methoxychlor	ND	ND	ND	14.5 J	ND	ND	ND	5,710 JN	ND	ND	ND
Endrin ketone	ND	ND	242 J	29.6 J	108 J	161 J	ND	356 J	ND	ND	ND
Toxaphene	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	ND
Notes:							* 50 X D/F				

Table 7: Analytical Data Summary: Polychlorinated Biphenyls (PCBs) Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014

RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001-DR0314-LW-01	P001-DR0501-LW-01	P001-DR0502-LW-01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01	P001-DR0702-SW-01
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-01	1408028-01	1408019-10	1408019-06
Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014	8/6/2014
Sample Matrix	Liquid Waste	Liquid Waste	Solid Waste							
PCB										
Aroclor-1016	ND	ND	ND							
Aroclor-1221	ND	ND	ND							
Aroclor-1232	ND	ND	ND							
Aroclor-1242	ND	ND	ND							
Aroclor-1248	ND	ND	ND							
Aroclor-1254	ND	ND	ND							
Aroclor-1260	ND	ND	ND							

Notes:
Liquid and solid waste samples indicate preliminary analytical data.
Soil samples indicate validated analytical data.

All results are reported in micrograms per kilogram (ug/kg)
J - Estimated value

NJ - presence of an analyte that has been "tentatively identified" and the associated numerical value.
ND - Not Detected

Table 7: Analytical Data Summary: Polychlorinated Biphenyls (PCBs) Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014

RST 3 Sample Number	P001-PL0202-SW-01	P001-S001-0002-01	P001-S002-0002-01	P001-S003-0002-01	P001-S003-0002-02	P001-S004-0002-01DL	P001-S005-0002-01	P001-S006-0002-01
CompuChem Lab ID	1408019-03	1408024-05	1408024-01	1408024-02	1408024-03	1408024-06RE	1408024-07	1408024-04
Sample Date	8/6/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014	8/7/2014
Sample Matrix	Solid Waste	Soil	Soil	Soil	Soil	Soil	Soil	Soil
PCB								
Aroclor-1016	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1232	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1242	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1248	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	ND	90.6	21.5	49.4 NJ	41.5	ND	ND	ND
Aroclor-1260	ND	32.2	ND	35.2	25	960 J	ND	ND

Notes:
Liquid and solid waste samples indicate preliminary analytical data.
Soil samples indicate validated analytical data.

All results are reported in micrograms per kilogram (ug/kg)
J - Estimated value

NJ - presence of an analyte that has been "tentatively identified" and the associated numerical value. ND - Not Detected

Table 8: Analytical Data Summary: RCRA Characteristics Wildroot Building Site Buffalo, Eric County, NY August 6 and 7, 2014

RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001-DR0314-LW-01	P001-DR0501-LW-01	P001-DR0502-LW-01	P001-DR0703-LW-01	P001-COMP01-LW-01	P001-COMP02-LW-01	P001-UST01-LW-01	P001-DR0702-SW-01	P001-PL0202-SW-01
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-09	1408019-01	1408028-01	1408019-10	1408019-06	1408019-03
Sample Date	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/6/2014	8/7/2014	8/6/2014	8/6/2014
Sample Matrix	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Liquid Waste	Solid Waste	Solid Waste
RCRA Characteristics	RCRA Characteristics											
Reactive Sulfide (mg/kg)	ND	ND	ND	ND	10 J	10 J	10 J	ND	ND	ND	NA	ND
Reactive Cyanide (mg/kg)	ND	ND	ND	12.5 J	ND	ND	ND	ND	ND	ND	NA	ND
Ignitability by Flashpoint (°F)	>140	>140	>140	>140	>140	>140	>140	>140	>140	105	126	>140
Corrosivity (as pH)	4.8	5.41	NA	8.43	NA	NA	NA	NA	NA	5.58	NA	6.85

Cornovary (as pH)

AGE AR Recounter Conservation and Recovery Act
NA - Nat Analyzed (Laboratory was snable to perform the analysis due to the sample matrix
ND - Not Detected

- result is greater than indicated value
may be a multiprama pet holignam
J. Estimated value
J. Estimated value

Table 9: Analytical Data Summary: TAL Metals and Mercury Wildroot Building Site **Buffalo, Erie County, New York** August 6 and 7, 2014

RST 3 Sample Number	P001-DR0302-LW-01	P001-DR0310-LW-01	P001-DR0312-LW-01	P001-DR0314-LW-01	P001-DR0501-LW-01	P001-DR0502-LW-01	P001-COMP01-LW-01	P001-COMP02-LW-01	
CompuChem Lab ID	1408019-07	1408019-04	1408019-05	1408019-02	1408019-08	1408028-02	1408019-01	1408028-01	
Sample Date	08/06/14	08/06/14	08/06/14	08/06/14	08/06/14	08/06/14	08/06/14	08/06/14	
Sample Matrix	Liquid Waste								
Units	mg/kg								
TAL Metals									
Aluminum	8.58 J	5.85 J	20.3	9.78 J	15.5 J	8.66 J	18.3 J	15.8 J	
Antimony	0.815 J	0.579 J	1.31 J	1.71 J	1.48 J	0.794 J	1.37 J	1.69 J	
Arsenic	0.689 J	1.1	0.567 J	0.676 J	0.683 J	0.44 J	0.352 J	ND	
Barium	ND	1.23 J	2.22 J	ND	10.3 J	ND	ND	9.58 J	
Beryllium	0.374 J	0.261 J	0.214 J	0.133 J	0.33 J	ND	0.213 J	ND	
Cadmium	ND	ND	0.184 J	ND	0.0645 J	0.148 J	0.447 J	0.297 J	
Calcium	ND	38.3 J	833	ND	726	ND	ND	394 J	
Chromium	0.181 J	0.381 J	2.44	0.143 J	1.19	ND	0.194 J	0.622 J	
Cobalt	ND	ND	ND	ND	ND	0.627 J	ND	0.91 J	
Copper	13.1	3.96	45.7	4.2	23.4	ND	45.6	12.2	
Iron	10.2 J	81.7	171	17.4 J	74.5	2.32 J	49.7	107	
Lead	2.85	0.831 J	41.9	2.51	10.2	0.184 J	1.24	6.69	
Magnesium	ND	ND	246 J	ND	245 J	ND	ND	126 J	
Manganese	0.120 J	1.1	2.35	0.383 J	1.21	0.0683 J	0.596 J	0.85 J	
Mercury	ND	ND	ND	ND	ND	0.00731 J	0.00697 J	ND	
Nickel	0.610 J	0.47 J	0.998	3.2	0.499 J	ND	0.203 J	0.369 J	
Potassium	6.89 J	23.2 J	47.4 J	2,390	98.5 J	19.4 J	25.3 J	87 J	
Selenium	0.991	1.42	0.746 J	0.579 J	0.831 J	0.987	0.427 J	0.352 J	
Silver	ND								
Sodium	ND	138 J	258 J	2,090	134 J	125 J	142 J	165 J	
Thallium	ND								
Vanadium	ND	ND	0.151 J	ND	ND	ND	ND	ND	
Zinc	31.6	6.26	675	52.3	474	0.946 J	77.3	279	

 $\frac{Notes:}{\mbox{Liquid and solid waste samples indicate preliminary analytical data}.$ Soil samples indicate validated analytical data.

All results are reported in milligrams per kilogram (mg/kg).

J - The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample

D - Sample result is based on a dilution.

ND - Not Detected

Table 9: Analytical Data Summary: TAL Metals and Mercury **Wildroot Building Site Buffalo, Erie County, New York** August 6 and 7, 2014

RST 3 Sample Number	P001-UST01-LW-01	P001-DR0702-SW-01	P001-PL0202-SW-01	P001-S001-0002-01	P001-S002-0002-01	P001-S003-0002-01	P001-S003-0002-02	P001-S005-0002-01	P001-S006-0002-01
CompuChem Lab ID	1408019-10	1408019-06	1408019-03	1408024-05	1408024-01	1408024-02	1408024-03	1408024-06	1408024-04
Sample Date	08/07/14	08/06/14	08/06/14	08/07/14	08/07/14	08/07/14	08/07/14	08/07/14	08/07/14
Sample Matrix	Liquid Waste	Solid Waste	Solid Waste	Soil	Soil	Soil	Soil	Soil	Soil
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
'AL Metals									
Aluminum	9.33 J	81.0	5.84 J	2,430 J	1,060 J	1,610 J	1,820 J	3,490 J	5,420 J
Antimony	1.15 J	1.11 J	0.965 J	ND	ND	ND	ND	21.8	ND
Arsenic	ND	0.437 J	0.535 J	1.29	0.226 J	1 J	0.689 J	216	19.1
Barium	ND	40.1	ND	281 J	26.1 J	194 J	248 J	42.6 J	367 J
Beryllium	0.231 J	0.311 J	0.191 J	ND	ND	ND	ND	1.01	ND
Cadmium	ND	ND	ND	2.23	0.315 J	0.236 J	0.291 J	ND	4.25
Calcium	48.6 J	1,540	ND	7,680 J	3,640 J	13,000 J	9,690 J	44,500 J	51,600 J
Chromium	ND	10.5	0.118 J	53.8	4.24	8.36	5.39	204	201
Cobalt	ND	0.627 J	ND	1.4 J	0.363 J	1.02 J	0.749 J	45.4	5.9
Copper	ND	2.23	ND	2,250	9.26	20.4	17.4	376	41
Iron	7.31 J	2,460	4.2 J	4,560	1,900	3,920	2,710	310,000	12,900
Lead	0.515 J	0.672 J	0.35 J	290	30.4	80 J	47.1 J	48.9	69.8
Magnesium	ND	6,940	ND	2,080 J	867 J	2,170 J	2,090 J	3,600 J	9,010 J
Manganese	14.5	27.1	0.0498 J	120 J	71.9 J	120 J	112 J	1,320 J	333 J
Mercury	ND	ND	ND	0.047	0.0166 J	0.0402	0.0307 J	0.185	0.21
Nickel	0.0983 J	47.8	ND	5.13	2.47	3.85	3.18	128	130
Potassium	11.2 J	41.1 J	429 J	ND	ND	ND	ND	ND	5,290
Selenium	0.469 J	0.487 J	0.437 J	ND	ND	ND	ND	ND	4
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	64.5 J	101 J	698	245 J	121 J	137 J	140 J	1,030	547 J
Thallium	ND	ND	ND	ND	ND	ND	ND	70	ND
Vanadium	ND	29.8	ND	4.25	1.78 J	2.94	2.83	247	205
Zinc	33.5	32.5	1.03 J	820	109	212 J	218	47.6	434

Notes:
Liquid and solid waste samples indicate preliminary analytical data.

Soil samples indicate validated analytical data.

All results are reported in milligrams per kilogram (mg/kg).

- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample
- D Sample result is based on a dilution.
- ND Not Detected

Table 10: Validated Analytical Data Summary: Total Lead (Paint Chips) Wildroot Building Site Buffalo, Eric County, New York August 8, 2014

RST 3 Sample Number	P001-PC001-01	P001-PC002-01	P001-PC003-01	P001-PC004-01	P001-PC005-01	P001-PC006-01	P001-PC007-01	P001-PC008-01	P001-PC009-01	P001-PC010-01	P001-PC011-01	P001-PC012-01
CompuChem Lab ID	1408025-12	1408025-01	1408025-02	1408025-03	1408025-04	1408025-05	1408025-06	1408025-07	1408025-08	1408025-09	1408025-10	1408025-11
Sample Date	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014	8/8/2014
Sample Matrix	Paint Chip											
Units	mg/kg											
Inorganics												
Total Lead	1,300	1,020	27.1	2,550	33.1	2,690	65.4	2,000	310	21,100	1,460	43.4

 $\label{eq:notes:notes:notes:} \\ \text{All results are reported in } \ \text{milligrams per kilogram} \ (\text{mg/kg}).$